The L [ subscript 1 ] penalized LAD estimator for high dimensional linear regression

نویسنده

  • Lie Wang
چکیده

In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1 penalized least absolute deviation method. Different from most of other methods, the L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises. Our analysis shows that the method achieves near oracle performance, i.e. with large probability, the L2 norm of the estimation error is of order O( √ k log p/n). The result is true for a wide range of noise distributions, even for the Cauchy distribution. Numerical results are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L1 penalized LAD estimator for high dimensional linear regression

In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1 penalized least absolute deviation method. Different from most of other methods, the L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises...

متن کامل

The L1L1 penalized LAD estimator for high dimensional linear regression

In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1 penalized least absolute deviation method. Different from most of other methods, the L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises...

متن کامل

Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions.

Data subject to heavy-tailed errors are commonly encountered in various scientific fields. To address this problem, procedures based on quantile regression and Least Absolute Deviation (LAD) regression have been developed in recent years. These methods essentially estimate the conditional median (or quantile) function. They can be very different from the conditional mean functions, especially w...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data

Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012